不同木芙蓉品种的镉胁迫响应Response of different Hibiscus mutabilis L. varieties to cadmium stress
李秀,陈曦,李梦霞,曾心美
LI Xiu,CHEN Xi,LI Mengxia,ZENG Xinmei
摘要(Abstract):
为了解不同品种木芙蓉对镉(Cd)胁迫的响应。采用水培试验方法研究了在0,2.5,5,10 mg·L-1Cd浓度下,四个木芙蓉品种的生长、耐性、叶片色素、Cd含量、Cd积累量及富集转运系数。结果表明:随Cd处理浓度增加,木芙蓉生长表现出低促高抑的毒物兴奋效应,生物量、根长和新枝长在低Cd浓度处理下相对CK增加,而在高Cd浓度下降低;Cd处理下,各品种叶片色素相对CK显著降低,‘百日华彩’的叶片色素含量最高;木芙蓉Cd耐性指数为0.76~1.17,‘百日华彩’对Cd的耐性最高为1.00~1.17;木芙蓉根部Cd含量显著高于地上部,分别为205.01~1 089.35 mg·kg~(-1)和27.70~188.92 mg·kg~(-1),在四个品种中,‘百日华彩’根部Cd含量最高,‘彩霞’地上部Cd含量最高;木芙蓉地上部Cd积累量显著高于根部,分别为0.17~1.01 mg·plant~(-1)和0.04~0.32 mg·plant~(-1);木芙蓉对Cd的富集系数为56.83~115.59,转运系数为0.08~0.38,‘百日华彩’的Cd富集能力最强,‘彩霞’的Cd转运系数最大。综上,木芙蓉在Cd污染条件下具有较强的耐性和积累能力,其中‘百日华彩’耐性最好,对Cd的富集能力最强,作为Cd修复观赏植物的潜力最大。
In order to understand the response of different Hibiscus mutabilis L. varieties to cadmium(Cd) stress, the hydroponic experiments were conducted to investigate the growth, tolerance, leaf pigment, Cadmium(Cd)concentration, Cd accumulation, bioconcentration factor and transfer factor of four different Hibiscus mutabilis L.varieties under different Cd concentrations(0, 2.5, 5, 10 mg·L~(-1)). The results showed that with the increase of Cd concentration, the growth of Hibiscus mutabilis L. showed a toxic hormetic effects. Basically, compared with CK(0 mg·L~(-1)), adding Cd(treatments) increased biomass, root length and new branch length for all Hibiscus mutabilis L.varieties under low Cd concentration, but had opposite effects under high Cd concentration. Under Cd treatment, the leaf pigment concentration of all varieties were significantly lower compared with CK, and the leaf pigment concentration of ‘Bairihuacai' species was the highest. The Cd tolerance index of Hibiscus mutabilis L. was 0.76~(-1).17,and ‘Bairihuacai' species had the highest Cd tolerance index(1.00~1.17). The Cd concentration in the root of Hibiscus mutabilis L.(205.01~1 089.35 mg·kg~(-1)) was significantly higher than that in shoot(27.70~188.92 mg·kg~(-1)). The Cd concentration in the root of ‘Bairihuacai' species was the highest than others, and ‘Caixia' species had the highest Cd concentration in the aboveground part. Cd accumulation in the aboveground part of Hibiscus mutabilis L. was significantly higher than that in the root, which was 0.17~1.01 mg·plant~(-1) and 0.04~0.32 mg·plant~(-1) respectively. The enrichment coefficient of Cd in Hibiscus mutabilis L. was 56.83~(-1)15.59, and the transport coefficient was from 0.08 to0.38. Among which ‘Bairihuacai' species had the highest Cd enrichment ability, and ‘Caixia' species had the highest Cd transport coefficient. In conclusion, Hibiscus mutabilis L. has strong tolerance and accumulation ability under Cd pollution condition, among which 'Bairihuacai' species had the best tolerance and the strongest Cd accumulation ability among the four species, and had the greatest potential as an ornamental emediation plants for Cd restoration.
关键词(KeyWords):
镉;木芙蓉;品种;耐性;积累
cadmium;Hibiscus mutabilis L.;varieties;tolerance;accumulation
基金项目(Foundation): 成都市植物园园级项目--木芙蓉对Cd污染土壤的修复潜力研究(202104)
作者(Author):
李秀,陈曦,李梦霞,曾心美
LI Xiu,CHEN Xi,LI Mengxia,ZENG Xinmei
参考文献(References):
- [1] RAZA A, HABIB M, KAKAVAND S N, et al. Phytoremediation of cadmium:physiological, biochemical, and molecular mechanisms[J].Biology, 2020, 9(7):177.
- [2]环保部,国土部.全国土壤污染状况调查公报[R].北京,环保部,2014.
- [3] Tang S, Yang K, Liu F, Peng M, Li K, Yang Z, Liu X, Guo F, Ma H. Overview of heavy metal pollution and health risk assessment of urban soils in Yangtze River Economic Belt, China. Environ Geochem Health. 2022 Dec;44(12):4455-4497. doi:10.1007/s10653-022-01210-2. Epub 2022Feb 4. PMID:35119596.
- [4] REEVES R D, BAKER A J M, JaffréT, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218(2):407-411.
- [5] VIJENDRA S, ACHLESH D. Phytoremediation:A multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environmental Technology&Innovation, 2020, 18:100774.
- [6]贾莲,张冬.镉对两种菊科植物种子萌发、幼苗生长及富集的影响[J].北方园艺,2022(21):58-65.
- [7]石小庆,李方文,刘晓莉,等.木芙蓉种质资源在成都地区的适应性研究[J].四川林业科技,2021, 42(04):90-93.
- [8]黄泽梅,周强英,李凌.木芙蓉对土壤铅离子的耐性及转移富集特性研究[J].西南师范大学学报(自然科学版),2020, 45(01):108-112.
- [9]杨馥榕,王晓红,肖琪,等.木槿品种对镉胁迫的生理响应及耐镉能力评价[J].生物技术通报,2022, 38(1):98.
- [10]王小雪.海滨木槿不同家系对重金属Cd胁迫的响应[D].西南大学,2012.
- [11] CHEN P, CHEN T, LI Z, et al. Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf(Hibiscus cannabinus L.)[J]. Industrial Crops and Products, 2020, 158:112970.
- [12]王学奎.植物生理生化实验原理和技术.第2版[M].北京:高等教育出版社,2006.
- [13]开建荣,王彩艳,李彩虹. 2种消解方法-原子吸收分光光度法检测大米粉中铜、锌、镉含量[J].食品科技,2018, 43(02):322-325.
- [14] AHMAD I, AKHTAR M J, ZAHIR Z A, et al. Organic amendments:effects on cereals growth and cadmium remediation[J]. International journal of environmental science and technology, 2015, 12(9):2919-2928.
- [15]尹泽润,罗宝利,罗锋,等.镉胁迫下水培杞柳生理特性及镉吸收转运[J].草业科学,2021, 38(10):10.
- [16]金恺.两种蔊菜属植物对重金属镉的耐性研究[D].沈阳农业大学,2019.
- [17]刘周莉,陈玮,何兴元,等.低浓度镉对忍冬生长及光合生理的影响[J].环境化学,2018, 37(2):223-228.
- [18]田小霞,毛培春,郭强,等.镉胁迫对马蔺根系形态及部分生理指标的影响[J].西北植物学报,2019, 39(6):1105-1113.
- [19] HASSAN W, BANO R, BASHIR S, et al. Cadmium toxicity and soil biological index under potato(Solanum tuberosum L.)cultivation[J]. Soil Research, 2016, 54(4):460-468.
- [20] JAKOVLJEVI?T, CVJETKO M, SEDAK M, et al. Balance of glucosinolates content under Cd stress in two Brassica species[J]. Plant physiology and biochemistry, 2013, 63:99-106.
- [21] FINGER-TEIXEIRA A, FERRARESE M L L, SOARES A R, et al. Cadmium-induced lignification restricts soybean root growth[J].Ecotoxicology and Environmental Safety, 2010, 73(8):1959-1964.
- [22] KüPPER H, PARAMESWARAN A, LEITENMAIER B, et al. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2007, 175(4):655-674.
- [23] JIA L, LIU Z, CHEN W, et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a Hyperaccumulator,Lonicera japonica Thunb[J]. Journal of Plant Growth Regulation, 2015, 34(1):13-21.
- [24] WEI Y, ZHANG Y Z, GAO P X, et al. Influence of photosynthesis and chlorophyll synthesis on Cd accumulation in Populus×canescens[J].Journal of Food, Agriculture&Environment, 2012, 10(1 part 2):1020-1023.
- [25] RAFIQ M T, AZIZ R, YANG X, et al. Phytoavailability of cadmium(Cd)to Pak choi(Brassica chinensis L.)grown in Chinese soils:A model to evaluate the impact of soil Cd pollution on potential dietary toxicity[J]. PLoS One, 2014, 9(11):e111461.
- [26] XU Z M, LI Q S, YANG P, et al. Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils[J]. Environmental Pollution, 2017, 224:89-97.
- [27] ZHU T, LI L, DUAN Q, et al. Progress in our understanding of plant responses to the stress of heavy metal cadmium[J]. Plant Signaling&Behavior, 2021, 16(1):1836884.
- [28] LIU S, ALI S, YANG R, et al. A newly discovered Cd-hyperaccumulator Lantana camara L[J]. Journal of hazardous materials, 2019, 371:233-242.
- [29] BOROWIAK K, GASECKA M, MLECZEK M, et al. Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpurea×triandra×viminalis 2 at various Zn concentrations[J]. Acta Physiologiae Plantarum, 2015, 37(8):1-12.
- [30]张晗芝,郭庆军,杨俊兴,等.不同品种蓖麻对镉的响应及修复能力评价[J].生态环境学报,2016, 25(3):531-538.
- [31] JIANG Y, JIANG S, LI Z, et al. Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry(Morus alba L.)cultivars[J]. Ecological Engineering, 2019, 129:38-44.
- [32] YANG G L, ZHENG M M, TAN A J, et al. Research on the mechanisms of plant enrichment and detoxification of cadmium[J]. Biology,2021, 10(6):544.
- [33]贾莲,刘周莉,陈玮,等.镉对金银花的毒物刺激效应[J].应用生态学报,2013, 24(4):935-940.
- [34]王树凤,施翔,孙海菁,等.镉胁迫下杞柳对金属元素的吸收及其根系形态构型特征[J].生态学报,2013, 33(19):6065-6073.
- [35] XIN J, HUANG B, DAI H, et al. Characterization of root morphology and root-derived low molecular weight organic acids in two sweet potato cultivars exposed to cadmium[J]. Archives of Agronomy&Soil Science, 2016:1-12.
- [36] SU Y, WANG X, LIU C, et al. Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency[J].Plant and soil, 2013, 363(1):201-213.
- [37] BALASUNDARAM U, VENKATARAMAN G, GEORGE S, et al. Metallothioneins from a hyperaccumulating plant Prosopis juliflora show difference in heavy metal accumulation in transgenic tobacco[J]. International Journal of Agriculture, Environment and Biotechnology,2014, 7(2):241-246.
- [38]火艳,李攀,祝遵凌.当代体验式花文化研究~以木芙蓉为例[J].中国野生植物资源,2015, 34(3):53-57.
- [39]郑鹏,史红文,邓红兵,等.武汉市65个园林树种的生态功能研究[J].植物科学学报,2012, 30(005):468-475.
- [40] JELUSIC M, LESTAN D. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses[J]. Chemosphere, 2015, 138:1001-1007.
- [41] WU M, LUO Q, LIU S, et al. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation[J]. Ecotoxicology and Environmental Safety, 2018, 162:35-41.