四川自然保护红外相机数据管理系统的研发及其应用Development and Application of Sichuan Nature Conservation Infrared Camera Data Management System
杨彪,李生强,杨旭,杨旭煜,古晓东,杨志松,戴强
YANG Biao,LI Shengqiang,YANG Xu,YANG Xuyu,GU Xiaodong,YANG Zhisong,DAI Qiang
摘要(Abstract):
通过红外相机监测可以获得海量的野生动物影像数据。然而,许多自然保护地在红外相机数据管理方面依旧面临红外数据海量、存储方式原始、缺乏数据技术、数据挖掘空白等困境。如何科学存储和管理海量的红外相机影像数据,专业高效完成数据鉴定和科学分析并运用于管理和科研,已成为红外相机监测工作中的重大难题。基于以上问题,利用四川自然保护红外相机数据管理信息化平台(Sichuan Nature Conservation Infrared Camera Data Management System, CDMS)能有效解决该问题。CDMS的研发设计上兼顾广大自然保护地的使用需求,同时吸纳不同数据库和数据信息平台的功能优点。目前CDMS的设计定位为主要针对四川省各类型自然保护地的交互式使用,集成了红外相机影像数据的规范存储、科学管理、智能查询、生态分析和可视化展示等功能,旨在促进野生动物红外相机影像素材转化为有效数据,实现数据的高效分析和深度挖掘,为野生动物研究、保护与管理、科普宣教等提供重要的技术与管理支撑。本文对CDMS的功能模块、主要构成、特点与优势、应用成效以及数据服务体系等做简要介绍。
Infrared camera trapping has been used worldwide for wildlife monitoring, and massive wildlife pictures and video clips have been obtained. However, in many nature reserves, the infrared camera data management is still faced with the difficulties massive infrared data, primitive storage mode, lack of data technology, blank data mining and so on. So, how to scientifically store and manage massive infrared image data, professionally and efficiently complete data identification and scientific analysis, and timely feedback the analysis results to researchers and managers has become a major problem in infrared camera monitoring. Based on above problems, Sichuan Nature Conservation Infrared Camera Data Management System(CDMS) could effectively solve those problems. The use needs of the vast nature reserves, and the functional advantages of different databases and data information platforms are taken into account in the research and development design of the CDMS. At present, CDMS is designed for interactive use of various types of nature reserves in Sichuan province, integrating the functions of standardized storage, scientific management, intelligent query, scientific analysis and visual display, and other functions, aiming at promoting the conversion of wildlife infrared camera images into effective data, realizing efficient analysis and deep mining of data,and providing professional technical and management support services for wildlife research, conservation, management and the popular science education. The establishment of this system will benefit data analysis and sharing, collaboration and information services for wildlife monitoring in Sichuan province, other provinces in China and other parts of the world. In this paper, the function module, main composition, characteristics and advantages of the platform in the data management system, application results and data service system of the system are briefly introduced.
关键词(KeyWords):
红外相机技术;红外相机数据;红外相机数据管理系统
Infrared camera trapping;Infrared camera data;Infrared camera data management system
基金项目(Foundation):
作者(Author):
杨彪,李生强,杨旭,杨旭煜,古晓东,杨志松,戴强
YANG Biao,LI Shengqiang,YANG Xu,YANG Xuyu,GU Xiaodong,YANG Zhisong,DAI Qiang
参考文献(References):
- [1]李晟,王大军,肖治术,等.红外相机技术在我国野生动物研究与保护中的应用与前景[J].生物多样性,2014,22(6):685-695.
- [2]肖治术,李欣海,姜广顺.红外相机技术在我国野生动物监测研究中的应用[J].生物多样性,2014,22(6):683-684.
- [3] JIANG G S, QI J Z, WANG G M, et al. New Hope for the Survival of the Amur Leopard in China[J]. Scientific Reports, 2015, 5:15475.
- [4]肖治术.红外相机技术促进我国自然保护区野生动物资源编目调查[J].兽类学报,2016,36(3):270-271.
- [5] Tobler, M. W., S. E. Carrillo-Percastegui, R. Leite Pitman, R. Mares, and G. Powell. An evaluation of camera traps for inventorying largeand medium-sized terrestrial rainforest mammals[J]. Anim. Conserv, 2008, 11:169-178.
- [6] Fegraus E H, Lin K, Ahumada J A, et al. Data acquisition and management software for camera trap data:A case study from the TEAM Network[J]. Ecological Informatics, 2011, 6(6):345-353.
- [7] Forrester T, McShea W J, Keys R W, et al. eMammal–citizen science camera trapping as a solution for broad-scale, long-term monitoring of wildlife populations[J]. Sustainable Pathways:Learning from the Past and Shaping the Future, 2013:4-9.
- [8]肖治术,王学志,李欣海.野生动物多样性监测图像数据管理系统CameraData介绍[J].生物多样性,2014,22(6):712-716.
- [9]唐军.红外相机动物捕获信息管理系统研发及其应用[D].中国林业科学研究院, 2015.
- [10]李佳琦,徐海根,万雅琼,等.全国哺乳动物多样性观测网络(China BON-Mammals)建设进展[J].生态与农村环境学报,2018,34(1):12-19.
- [11]肖治术,李学友,向左甫,等.中国兽类多样性监测网的建设规划与进展[J].生物多样性,2017,25(3):237-245.
- [12] Smith,解焱.中国兽类野外手册[M].长沙:湖南教育出版社, 2009.
- [13]刘少英,吴毅.中国兽类图鉴[M].海峡书局, 2019.
- [14]郑光美.中国鸟类分类与分布名录(第三版)[M].北京:科学出版社, 2017.
- [15]蒋忠军,叶信初,胡加云,等.基于红外相机对四川千佛山国家级自然保护区兽类及鸟类多样性的初步调查[J].四川动物,2019,38(1):99-106.
- [16]张德丞,和延龙,冯一帆,等.四川勿角自然保护区野生鸟兽的红外相机初步监测[J].四川动物,2020,39(2):221-228.
- [17]张鑫,郑雄,吉帅帅,等.四川九顶山自然保护区兽类多样性的红外相机初步监测[J].四川林业科技, 2020,(4).(待刊)
- [18]余吉,付明霞,宋心强,等.基于MaxEnt模型的四川大相岭保护区藏酋猴(Macaca thibetana)生境适宜性评价[J].四川林业科技,2020(3):45-50.
- [19] Green, Rees, Stephens, et al. Innovations in Camera Trapping Technology and Approaches:The Integration of Citizen Science and Artificial Intelligence[J]. Animals, 2020, 10(1):132.
- [20]陈凯,施云龙.物联网在智慧林业建设中应用[J].电子技术与软件工程,2019(13):9-9.
- [21]赵婷婷,周哲峰,李东喜,等.基于改进的Cifar-10深度学习模型的金钱豹个体识别研究[J].太原理工大学学报,2018,v.49;No.218(4):73-79+86.
- [22]宫一男,谭孟雨,王震,等.基于深度学习的红外相机动物影像人工智能识别:以东北虎豹国家公园为例[J].兽类学报,2019,039(4):458-465.
- [23]李明超,刘承照,张野,等.耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法[J].大地构造与成矿学,2020(2):203-211.
- [24]周文芃.深度学习:人工智能发展的驱动引擎[J].数字通信世界,2018,168(12):279-280.
- [25]麻建,周静,李中伟,马宁.云计算环境下的信息系统运维模式研究[J].电力信息与通信技术,2015,13(8):140-144.
- [26]陈军.基于大数据的ZQ就业推荐平台设计及运维管理机制研究[D].广东工业大学, 2018.
- [27] Mitchell R K, Agle B R, Wood D J. Toward a Theory of Stakeholder Identification and Salience:Defining the Principle of Who and What Really Counts[J]. Academy of Management Review, 1997, 22(4):853-886.
- [28] Hillman, AJ and GD Keim.“Shareholder value, stakeholder management, and social issues:What’ s the bottom line?”[J]. Strategic Management Journal, 2001, 22:125-139.
- 红外相机技术
- 红外相机数据
- 红外相机数据管理系统
Infrared camera trapping - Infrared camera data
- Infrared camera data management system