大花序桉优树家系苗期性状的遗传变异Genetic Variation and Selection of Seedling Traits in Superior Eucalyptus cloeziana Families
陈小中,张临萍,陈炙,刘欢欢,黄振,李佳蔓,杨汉波
CHEN Xiaozhong,ZHANG Linpin,CHEN Zhi,LIU Huanhuan,HUANG Zhen,LI Jiaman,YANG Hanbo
摘要(Abstract):
调查了大花序桉家系生长(苗高、地径)性状,为大花序桉苗期遗传变异与选择提供理论依据。以1年生大花序桉为材料进行苗高和地径的遗传变异分析、方差分析、遗传参数估算,利用隶属函数法综合选择优良家系。大花序桉苗高和地径在家系间差异极显著,其重复力为0.895和0.985。苗高和地径变异系数分别为44.01%和65.96%。苗高家系遗传力和单株遗传力分别为0.894和1.605,地径家系遗传力和单株遗传力分别为0.985和2.935。相关性分析结果表明,苗高和地径呈负相关,但不显著。一般配合力分析结果表明,苗高和地径一般配合力高的家系差异较大,难以进行联合筛选,需进一步分析。大花序桉家系幼苗生长性状存在丰富的遗传变异,且受到较强的遗传控制,有较好的遗传改良潜力。大花序桉幼苗苗高和地径具有独立性,可进行单独定向选择。针对育种目标,利用隶属函数法最终选择出5个优良家系(39、19、38、25和13),其中家系39和19地径增益巨大,分别为254.47%和123.59%,可作为优良亲本选择或定向培育材料。
In order to provide theoretical basis for genetic variation and selection of Eucalyptus cloeziana F. Muell.families at seedling stage, the growth(tree height and diameter at ground) of E. cloeziana families were investigated.One-year-old E. cloeziana was used to carry out genetic variation, variance, and genetic parameters estimation of seedling height and ground diameter, and superior families were comprehensively selected by the membership function method. The height and diameter at ground of E. cloeziana were significantly different among the families, and the repeatability was between 0.895 and 0.985. The coefficient of variation of height and diameter at ground were 44.01%and 65.96%, respectively. The family heredity and single heredity of height were 0.894 and 1.605, and the family and single heredity of diameter at ground were 0.985 and 2.935, respectively. Correlation analysis results showed that seedling height and ground diameter were negatively correlated, but not significant. The results of general combining ability analysis showed that the families with high general combining ability of different traits had great differences,which was difficult to carry out combined screening and further analysis was needed. There were abundant genetic variations in seedling growth traits of E. cloeziana families, which were under strong genetic control and had good genetic improvement potential. The height and ground diameter of E. cloeziana families were independent and could be individually oriented. Five optimal families(39, 19, 38, 25, and 13) were selected through the membership function method. Family 39 and 19 had extremely high genetic gain of ground diameter, and they could be used as excellent parents and(or) directive breeding materials.
关键词(KeyWords):
大花序桉;家系;苗期;遗传变异;选择
Eucalyputs cloeziana F. Muell.;Family;Seedling;Genetic variation;Selection
基金项目(Foundation): 国家重点研发计划项目(2016YFD600501)
作者(Author):
陈小中,张临萍,陈炙,刘欢欢,黄振,李佳蔓,杨汉波
CHEN Xiaozhong,ZHANG Linpin,CHEN Zhi,LIU Huanhuan,HUANG Zhen,LI Jiaman,YANG Hanbo
参考文献(References):
- [1]祁述雄.中国桉树[M].北京:中国林业出版社, 2002.
- [2]姜笑梅,叶克林,吕建雄.中国桉树和相思人工林木材形质与加工利用[M].北京:科学出版社, 2007.
- [3]王建忠,熊涛,张磊,等. 25年生大花序桉种源生长与形质性状的遗传变异与选择[J].林业科学研究,2016,29(5):705-713.
- [4]韦炬,王国祥.万亩桉树示范林[C].广东湛江:国际桉树学术研讨会, 1990.
- [5]欧阳林男,陈少雄,何沙娥,等.基于MaxEnt模型对大花序桉在我国南方的适生区预测[J].桉树科技,2017,34(4):1-9.
- [6]李昌荣,项东云,陈健波,等.大花序桉木材基本密度的变异研究[J].中南林业科技大学学报,2012,32(6):158-162.
- [7]黄振,张俊,陈炙,等.大花序桉国内遗传育种现状与研究展望[J].四川林业科技,2018,39(1):17-21.
- [8]余玉珠,苏远玉,陆艳柳,等.大花序桉种源幼龄木材物理性质变异[J].桉树科技,2019,36(2):9-15.
- [9] Bootle K. Wood in Australia:Types, properties and uses[M]. Sydney, Australia Mo Graw-Hill Book Company, 1983.
- [10] Dickinson GR, Nikle DG, Leggate W, et al. Variation in Eucalyputs cloeziana in coastal north Queensland plantings and implications for future improvement strategies[C]//Proceeding of QFRI-IUFRO Conference. Caloundra, Queensland, Australia, 1996, 27 October-1 November.
- [11] Phillips FH. The pulping and papermaking potential of young plantation-grown Eucalypts from Dongmen, China Technical Communication No.40[R]. In China-Australia afforestation project at Dongmen State-owned Forest Farm, People’s Republic of China, 1989, 20-24 October.
- [12] Muneri A, Leggate W, Palmer G. Relationships between surface growth strain and some trees:Wood and sawn timber characteristics of Eucalyptus cloeziana[J]. S. Afr. For. J., 1999, 186:41-49.
- [13]杨汉波,郭洪英,陈炙,等.引种桉树种源生长性状的遗传变异及早期评价[J].西北林学院学报,2019,34(6):1-7.
- [14]邓紫宇,陈健波,郭东强,等.大花序桉的遗传多样性分析[J].林业科学研究,2019,32(4):41-46.
- [15]玉首杰,邓海群.大花序桉(澳洲大花梨)木材用于家具制造的探索[J].国际木业,2019,49(1):39-40.
- [16]郑仁华,杨宗武,施季森,等.福建柏优树子代苗期性状遗传变异和生长规律研究[J].林业科学,2003,39(1):179-183.
- [17]周永学,苏晓华,樊军锋,等.引种欧洲黑杨无性系苗期生长测定与选择[J].西北农林科技大学学报:自然科学版,2004,32(10):102-106.
- [18]童春发,卫巍,尹辉,等.林木半同胞子代测定遗传模型分析[J].林业科学,2010,46(1):29-34.
- [19]续九如.林木数量遗传学[M].北京:中国林业出版社, 2006.
- [20]李斌,刘立强,罗淑萍,等.扁桃花芽的抗寒性测定与综合评价[J].经济林研究,2012,30(3):16-21.
- [21]朱之悌.林木遗传学基础[M].北京:中国林业出版社, 1990.
- [22]凌娟娟,肖遥,杨桂娟,等.灰楸无性系生长和形质性状变异与研究[J].林业科学研究,2019,32(5):149-156.
- [23] White TL, Adams WT. Forest Genetics[M]. CABI, 2007.
- [24]陈益泰.林木早期选择研究新进展[J].林业科学研究,1994,7(7):13-22.
- [25]王国良,罗建勋,文吉富,等.马尾松种子园半同胞家系子代苗期性状遗传变异[J].四川林业科技,2009,30(3):18-21.
- [26]王戈,唐源盛,杨汉波,等.桢楠优良种源/家系苗期评价和选择研究[J].四川林业科技,2019,40(3):63-66.
- [27]刘宇,徐焕文,边秀艳,等.白桦半同胞家系苗期生长和光合特性及其选育评价指标筛选[J].西北植物学报,2013,33(5):0963-0969.
- [28]董章凯,邢世岩,王亚明,等.麻栎半同胞家系苗期特性分析[J].东北林业大学学报,2011,39(4):27-36.
- [29]卢超,高明博,焦小钟,等.几个小麦亲本主要农艺性状的配合力评价及遗传力分析[J].麦类作物学报,2010,30(6):1023-1028.
- [30]尚秀华,罗建中,张沛健,等.早期赤桉家系生长与抗风性遗传分析[J].分子植物育种,2017a,15(5):1918-1926.
- [31] Zhao XY, Li Y, Zheng M, et al. Comparative analysis of growth and photosynthetic characteristics of(Populus simonii×P. nigra)×(P. nigra×P. simonii)hybrid clones of different ploidies[J]. PloS One, 2015, 10(4):e0119259.
- [32]张秦徽,王洪武,姜国云,等.红松半同胞家系变异分析及选择研究[J].植物研究,2019,39(4):557-567.
- [33]罗建中,Roger A,项东云,等.邓恩桉生长、木材密度和树皮厚度的遗传变异研究[J].林业科学研究,2009,22(6):758-764.
- [34]周志春,金国庆,秦国峰,等.马尾松纸浆材重要经济性状配合力及杂种优势分析[J].林业科学,2004,40(4):52-57.
- [35]贾庆彬,张含国,张磊,等.杂种落叶松家系变异分析与优良家系选择[J].东北林业大学学报,2016,44(4):1-7.